1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
//! Types and definitions for GICv2.
//!
//! The official documentation: <https://developer.arm.com/documentation/ihi0048/latest/>
use core::ptr::NonNull;
use crate::registers::gicv2_regs::*;
use crate::{GenericArmGic, IntId, TriggerMode};
use tock_registers::interfaces::{Readable, Writeable};
/// The GIC distributor.
///
/// The Distributor block performs interrupt prioritization and distribution
/// to the CPU interface blocks that connect to the processors in the system.
///
/// The Distributor provides a programming interface for:
/// - Globally enabling the forwarding of interrupts to the CPU interfaces.
/// - Enabling or disabling each interrupt.
/// - Setting the priority level of each interrupt.
/// - Setting the target processor list of each interrupt.
/// - Setting each peripheral interrupt to be level-sensitive or edge-triggered.
/// - Setting each interrupt as either Group 0 or Group 1.
/// - Forwarding an SGI to one or more target processors.
///
/// In addition, the Distributor provides:
/// - visibility of the state of each interrupt
/// - a mechanism for software to set or clear the pending state of a peripheral
/// interrupt.
#[derive(Debug, Copy, Clone)]
struct GicDistributor {
base: NonNull<GicDistributorRegs>,
support_irqs: usize,
#[allow(dead_code)]
support_cpu: usize,
}
impl GicDistributor {
const GICD_DISABLE: u32 = 0;
const GICD_ENABLE: u32 = 1;
const CPU_NUM_SHIFT: usize = 5;
const CPU_NUM_MASK: u32 = 0b111;
const IT_LINES_NUM_MASK: u32 = 0b11111;
/// Construct a new GIC distributor instance from the base address.
pub const fn new(base: *mut u8) -> Self {
Self {
base: NonNull::new(base).unwrap().cast(),
support_irqs: 0,
support_cpu: 0,
}
}
const fn regs(&self) -> &GicDistributorRegs {
unsafe { self.base.as_ref() }
}
/// Configures the trigger type for the interrupt with the given ID.
fn set_trigger(&mut self, id: usize, tm: TriggerMode) {
// type is encoded with two bits, MSB of the two determine type
// 16 irqs encoded per ICFGR register
let index = id >> 4;
let bit_shift = ((id & 0xf) << 1) + 1;
let mut reg_val = self.regs().ICFGR[index].get();
match tm {
TriggerMode::Edge => reg_val |= 1 << bit_shift,
TriggerMode::Level => reg_val &= !(1 << bit_shift),
}
self.regs().ICFGR[index].set(reg_val);
}
/// Initializes the GIC distributor.
///
/// It disables all interrupts, sets the target of all SPIs to CPU 0,
/// configures all SPIs to be edge-triggered, and finally enables the GICD.
///
/// This function should be called only once.
pub fn init(&mut self) {
let typer = self.regs().TYPER.get();
// The maximum number of interrupts that the GIC supports
// If ITLinesNumber=N, the maximum number of interrupts is 32(N+1)
let irq_num = (((typer & Self::IT_LINES_NUM_MASK) + 1) * 32) as usize;
match irq_num {
0..=IntId::GIC_MAX_IRQ => self.support_irqs = irq_num,
_ => self.support_irqs = IntId::GIC_MAX_IRQ,
}
self.support_cpu = (((typer >> Self::CPU_NUM_SHIFT) & Self::CPU_NUM_MASK) + 1) as usize;
// disable GICD
self.regs().CTLR.set(Self::GICD_DISABLE);
// Set all global interrupts to CPU0.
for i in (IntId::SPI_START..self.support_irqs).step_by(4) {
// Set external interrupts to target cpu 0
// once time set 4 interrupts
self.regs().ITARGETSR[i / 4].set(0x01_01_01_01);
}
// Initialize all the SPIs to edge triggered
for i in IntId::SPI_START..self.support_irqs {
self.set_trigger(i, TriggerMode::Edge);
}
// Set priority on all global interrupts
for i in (IntId::SPI_START..self.support_irqs).step_by(4) {
// once time set 4 interrupts
self.regs().IPRIORITYR[i / 4].set(0xa0_a0_a0_a0);
}
// Deactivate and disable all SPIs
for i in (IntId::SPI_START..self.support_irqs).step_by(32) {
self.regs().ICACTIVER[i / 32].set(u32::MAX);
self.regs().ICENABLER[i / 32].set(u32::MAX);
}
// enable GIC0
self.regs().CTLR.set(Self::GICD_ENABLE);
}
}
/// The GIC CPU interface.
///
/// Each CPU interface block performs priority masking and preemption
/// handling for a connected processor in the system.
///
/// Each CPU interface provides a programming interface for:
///
/// - enabling the signaling of interrupt requests to the processor
/// - acknowledging an interrupt
/// - indicating completion of the processing of an interrupt
/// - setting an interrupt priority mask for the processor
/// - defining the preemption policy for the processor
/// - determining the highest priority pending interrupt for the processor.
#[derive(Debug, Copy, Clone)]
struct GicCpuInterface {
base: NonNull<GicCpuInterfaceRegs>,
}
impl GicCpuInterface {
const GICC_ENABLE: u32 = 1;
/// Construct a new GIC CPU interface instance from the base address.
pub const fn new(base: *mut u8) -> Self {
Self {
base: NonNull::new(base).unwrap().cast(),
}
}
const fn regs(&self) -> &GicCpuInterfaceRegs {
unsafe { self.base.as_ref() }
}
/// Initializes the GIC CPU interface.
///
/// It unmask interrupts at all priority levels and enables the GICC.
///
/// This function should be called only once.
pub fn init(&self, gicd: &GicDistributor) {
// Deactivate and disable all private interrupts
gicd.regs().ICACTIVER[0].set(u32::MAX);
gicd.regs().ICENABLER[0].set(u32::MAX);
// Set priority on private interrupts
for i in (0..IntId::SPI_START).step_by(4) {
// once time set 4 interrupts
gicd.regs().IPRIORITYR[i / 4].set(0xa0_a0_a0_a0);
}
// unmask interrupts at all priority levels
self.regs().PMR.set(0xff);
// enable GIC0
self.regs().CTLR.set(Self::GICC_ENABLE);
}
}
unsafe impl Send for GicDistributor {}
unsafe impl Sync for GicDistributor {}
unsafe impl Send for GicCpuInterface {}
unsafe impl Sync for GicCpuInterface {}
/// Driver for an Arm Generic Interrupt Controller version 2.
#[derive(Debug, Copy, Clone)]
pub struct GicV2 {
gicd: GicDistributor,
gicc: GicCpuInterface,
}
unsafe impl Send for GicV2 {}
unsafe impl Sync for GicV2 {}
impl GicV2 {
/// # Safety
///
/// The given base addresses must point to the GIC distributor and redistributor registers
/// respectively. These regions must be mapped into the address space of the process as device
/// memory, and not have any other aliases, either via another instance of this driver or
/// otherwise.
pub const fn new(gicd: *mut u8, gicc: *mut u8) -> Self {
Self {
gicd: GicDistributor::new(gicd),
gicc: GicCpuInterface::new(gicc),
}
}
}
impl GenericArmGic for GicV2 {
/// Initialises the GIC.
fn init_primary(&mut self) {
self.gicd.init();
self.gicc.init(&self.gicd);
}
/// Initialises the GIC for the current CPU core.
fn per_cpu_init(&mut self) {
self.gicc.init(&self.gicd);
}
/// Configures the trigger type for the interrupt with the given ID.
fn set_trigger(&mut self, intid: IntId, tm: TriggerMode) {
// Only configurable for SPI interrupts
if intid.0 < IntId::SPI_START {
return;
}
self.gicd.set_trigger(intid.0, tm);
}
/// Enables the interrupt with the given ID.
fn enable_interrupt(&mut self, intid: IntId) {
let index = intid.0 / 32;
let bit = 1 << (intid.0 % 32);
self.gicd.regs().ISENABLER[index].set(bit);
}
/// Disable the interrupt with the given ID.
fn disable_interrupt(&mut self, intid: IntId) {
let index = intid.0 / 32;
let bit = 1 << (intid.0 % 32);
self.gicd.regs().ICENABLER[index].set(bit);
}
fn get_and_acknowledge_interrupt(&self) -> Option<IntId> {
let iar = self.gicc.regs().IAR.get();
let id = (iar & 0x3ff) as usize;
if id >= IntId::SPECIAL_START {
None
} else {
Some(IntId(id))
}
}
/// Informs the interrupt controller that the CPU has completed processing the given interrupt.
/// This drops the interrupt priority and deactivates the interrupt.
fn end_interrupt(&self, intid: IntId) {
self.gicc.regs().EOIR.set(intid.0 as u32);
}
}