1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
use alloc::vec::Vec;
use axalloc::PhysPage;
use axerrno::AxResult;
use axhal::{
mem::{virt_to_phys, VirtAddr, PAGE_SIZE_4K},
paging::{MappingFlags, PageSize, PageTable},
};
use axio::{Seek, SeekFrom};
use core::ptr::copy_nonoverlapping;
use crate::MemBackend;
/// A continuous virtual area in user memory.
///
/// NOTE: Cloning a `MapArea` needs allocating new phys pages and modifying a page table. So
/// `Clone` trait won't implemented.
pub struct MapArea {
/// phys pages of this area
pub pages: Vec<Option<PhysPage>>,
/// start virtual address
pub vaddr: VirtAddr,
/// mapping flags of this area
pub flags: MappingFlags,
/// whether the area is backed by a file
pub backend: Option<MemBackend>,
}
impl MapArea {
/// Create a lazy-load area and map it in page table (page fault PTE).
pub fn new_lazy(
start: VirtAddr,
num_pages: usize,
flags: MappingFlags,
backend: Option<MemBackend>,
page_table: &mut PageTable,
) -> Self {
let mut pages = Vec::with_capacity(num_pages);
for _ in 0..num_pages {
pages.push(None);
}
page_table
.map_fault_region(start, num_pages * PAGE_SIZE_4K, flags)
.unwrap();
Self {
pages,
vaddr: start,
flags,
backend,
}
}
/// Allocated an area and map it in page table.
pub fn new_alloc(
start: VirtAddr,
num_pages: usize,
flags: MappingFlags,
data: Option<&[u8]>,
backend: Option<MemBackend>,
page_table: &mut PageTable,
) -> AxResult<Self> {
let pages = PhysPage::alloc_contiguous(num_pages, PAGE_SIZE_4K, data)?;
debug!(
"start: {:X?}, size: {:X}, page start: {:X?} flags: {:?}",
start,
num_pages * PAGE_SIZE_4K,
pages[0].as_ref().unwrap().start_vaddr,
flags
);
page_table
.map_region(
start,
virt_to_phys(pages[0].as_ref().unwrap().start_vaddr),
num_pages * PAGE_SIZE_4K,
flags,
false,
)
.unwrap();
Ok(Self {
pages,
vaddr: start,
flags,
backend,
})
}
/// Deallocate all phys pages and unmap the area in page table.
pub fn dealloc(&mut self, page_table: &mut PageTable) {
page_table.unmap_region(self.vaddr, self.size()).unwrap();
self.pages.clear();
}
/// 如果处理失败,返回false,此时直接退出当前程序
pub fn handle_page_fault(
&mut self,
addr: VirtAddr,
flags: MappingFlags,
page_table: &mut PageTable,
) -> bool {
trace!(
"handling {:?} page fault in area [{:?}, {:?})",
addr,
self.vaddr,
self.end_va()
);
assert!(
self.vaddr <= addr && addr < self.end_va(),
"Try to handle page fault address out of bound"
);
if !self.flags.contains(flags) {
error!(
"Try to access {:?} memory addr: {:?} with {:?} flag",
self.flags, addr, flags
);
return false;
}
let page_index = (usize::from(addr) - usize::from(self.vaddr)) / PAGE_SIZE_4K;
if page_index >= self.pages.len() {
error!("Phys page index out of bound");
return false;
}
if self.pages[page_index].is_some() {
error!("Page fault in page already loaded");
return false;
}
debug!("page index {}", page_index);
// Allocate new page
let mut page = PhysPage::alloc().expect("Error allocating new phys page for page fault");
debug!(
"new phys page virtual (offset) address {:?}",
page.start_vaddr
);
// Read data from backend to fill with 0.
match &mut self.backend {
Some(backend) => {
if backend
.read_from_seek(
SeekFrom::Current((page_index * PAGE_SIZE_4K) as i64),
page.as_slice_mut(),
)
.is_err()
{
warn!("Failed to read from backend to memory");
page.fill(0);
}
}
None => page.fill(0),
};
// Map newly allocated page in the page_table
page_table
.map_overwrite(
addr.align_down_4k(),
virt_to_phys(page.start_vaddr),
axhal::paging::PageSize::Size4K,
self.flags,
)
.expect("Map in page fault handler failed");
axhal::arch::flush_tlb(addr.align_down_4k().into());
self.pages[page_index] = Some(page);
true
}
/// Sync pages in index back to `self.backend` (if there is one).
///
/// # Panics
///
/// Panics if index is out of bounds.
pub fn sync_page_with_backend(&mut self, page_index: usize) {
if let Some(page) = &self.pages[page_index] {
if let Some(backend) = &mut self.backend {
if backend.writable() {
let _ = backend
.write_to_seek(
SeekFrom::Start((page_index * PAGE_SIZE_4K) as u64),
page.as_slice(),
)
.unwrap();
}
}
} else {
debug!("Tried to sync an unallocated page");
}
}
/// Deallocate some pages from the start of the area.
/// This function will unmap them in a page table. You need to flush TLB after this function.
pub fn shrink_left(&mut self, new_start: VirtAddr, page_table: &mut PageTable) {
assert!(new_start.is_aligned_4k());
let delete_size = new_start.as_usize() - self.vaddr.as_usize();
let delete_pages = delete_size / PAGE_SIZE_4K;
// move backend offset
if let Some(backend) = &mut self.backend {
let _ = backend.seek(SeekFrom::Current(delete_size as i64)).unwrap();
}
// remove (dealloc) phys pages
drop(self.pages.drain(0..delete_pages));
// unmap deleted pages
page_table.unmap_region(self.vaddr, delete_size).unwrap();
self.vaddr = new_start;
}
/// Deallocate some pages from the end of the area.
/// This function will unmap them in a page table. You need to flush TLB after this function.
pub fn shrink_right(&mut self, new_end: VirtAddr, page_table: &mut PageTable) {
assert!(new_end.is_aligned_4k());
let delete_size = self.end_va().as_usize() - new_end.as_usize();
let delete_pages = delete_size / PAGE_SIZE_4K;
// remove (dealloc) phys pages
drop(
self.pages
.drain((self.pages.len() - delete_pages)..self.pages.len()),
);
// unmap deleted pages
page_table.unmap_region(new_end, delete_size).unwrap();
}
/// Split this area into 2.
pub fn split(&mut self, addr: VirtAddr) -> Self {
assert!(addr.is_aligned_4k());
let right_page_count = (self.end_va() - addr.as_usize()).as_usize() / PAGE_SIZE_4K;
let right_page_range = self.pages.len() - right_page_count..self.pages.len();
let right_pages = self.pages.drain(right_page_range).collect();
Self {
pages: right_pages,
vaddr: addr,
flags: self.flags,
backend: self.backend.as_ref().map(|backend| {
let mut backend = backend.clone();
let _ = backend
.seek(SeekFrom::Current(
(addr.as_usize() - self.vaddr.as_usize()) as i64,
))
.unwrap();
backend
}),
}
}
/// Split this area into 3.
pub fn split3(&mut self, start: VirtAddr, end: VirtAddr) -> (Self, Self) {
assert!(start.is_aligned_4k());
assert!(end.is_aligned_4k());
assert!(start < end);
assert!(self.vaddr < start);
assert!(end < self.end_va());
let right_pages = self
.pages
.drain(
self.pages.len() - (self.end_va().as_usize() - end.as_usize()) / PAGE_SIZE_4K
..self.pages.len(),
)
.collect();
let mid_pages = self
.pages
.drain(
self.pages.len() - (self.end_va().as_usize() - start.as_usize()) / PAGE_SIZE_4K
..self.pages.len(),
)
.collect();
let mid = Self {
pages: mid_pages,
vaddr: start,
flags: self.flags,
backend: self.backend.as_ref().map(|backend| {
let mut backend = backend.clone();
let _ = backend
.seek(SeekFrom::Current(
(start.as_usize() - self.vaddr.as_usize()) as i64,
))
.unwrap();
backend
}),
};
let right = Self {
pages: right_pages,
vaddr: end,
flags: self.flags,
backend: self.backend.as_ref().map(|backend| {
let mut backend = backend.clone();
let _ = backend
.seek(SeekFrom::Current(
(end.as_usize() - self.vaddr.as_usize()) as i64,
))
.unwrap();
backend
}),
};
(mid, right)
}
/// Create a second area in the right part of the area, [self.vaddr, left_end) and
/// [right_start, self.end_va()).
/// This function will unmap deleted pages in a page table. You need to flush TLB after calling
/// this.
pub fn remove_mid(
&mut self,
left_end: VirtAddr,
right_start: VirtAddr,
page_table: &mut PageTable,
) -> Self {
assert!(left_end.is_aligned_4k());
assert!(right_start.is_aligned_4k());
// We can have left_end == right_start, although it doesn't do anything other than create
// two areas.
assert!(left_end <= right_start);
let delete_size = right_start.as_usize() - left_end.as_usize();
let delete_range = ((left_end.as_usize() - self.vaddr.as_usize()) / PAGE_SIZE_4K)
..((right_start.as_usize() - self.vaddr.as_usize()) / PAGE_SIZE_4K);
// create a right area
let pages = self
.pages
.drain(((right_start.as_usize() - self.vaddr.as_usize()) / PAGE_SIZE_4K)..)
.collect();
let right_area = Self {
pages,
vaddr: right_start,
flags: self.flags,
backend: self.backend.as_ref().map(|backend| {
let mut backend = backend.clone();
let _ = backend
.seek(SeekFrom::Current(
(right_start.as_usize() - self.vaddr.as_usize()) as i64,
))
.unwrap();
backend
}),
};
// remove pages
let _ = self.pages.drain(delete_range);
page_table.unmap_region(left_end, delete_size).unwrap();
right_area
}
}
impl MapArea {
/// return the size of the area, which thinks the page size is default 4K.
pub fn size(&self) -> usize {
self.pages.len() * PAGE_SIZE_4K
}
/// return the end virtual address of the area.
pub fn end_va(&self) -> VirtAddr {
self.vaddr + self.size()
}
/// return whether all the pages have been allocated.
pub fn allocated(&self) -> bool {
self.pages.iter().all(|page| page.is_some())
}
/// # Safety
/// This function is unsafe because it dereferences a raw pointer.
/// It will return a slice of the area's memory, whose len is the same as the area's size.
pub unsafe fn as_slice(&self) -> &[u8] {
unsafe { core::slice::from_raw_parts(self.vaddr.as_ptr(), self.size()) }
}
/// Fill `self` with `byte`.
pub fn fill(&mut self, byte: u8) {
self.pages.iter_mut().for_each(|page| {
if let Some(page) = page {
page.fill(byte);
}
});
}
/// If [start, end) overlaps with self.
pub fn overlap_with(&self, start: VirtAddr, end: VirtAddr) -> bool {
self.vaddr <= start && start < self.end_va() || start <= self.vaddr && self.vaddr < end
}
/// If [start, end] contains self.
pub fn contained_in(&self, start: VirtAddr, end: VirtAddr) -> bool {
start <= self.vaddr && self.end_va() <= end
}
/// If self contains [start, end].
pub fn contains(&self, start: VirtAddr, end: VirtAddr) -> bool {
self.vaddr <= start && end <= self.end_va()
}
/// If self strictly contains [start, end], which stands for the start and end are not equal to self's.
pub fn strict_contain(&self, start: VirtAddr, end: VirtAddr) -> bool {
self.vaddr < start && end < self.end_va()
}
/// Update area's mapping flags and write it to page table. You need to flush TLB after calling
/// this function.
pub fn update_flags(&mut self, flags: MappingFlags, page_table: &mut PageTable) {
self.flags = flags;
page_table
.update_region(self.vaddr, self.size(), flags)
.unwrap();
}
/// Allocating new phys pages and clone it self.
/// This function will modify the page table as well.
pub fn clone_alloc(&self, page_table: &mut PageTable) -> AxResult<Self> {
// All the pages have been allocated. Allocate a contiguous area in phys memory.
if self.allocated() {
MapArea::new_alloc(
self.vaddr,
self.pages.len(),
self.flags,
Some(unsafe { self.as_slice() }),
self.backend.clone(),
page_table,
)
} else {
let pages: Vec<_> = self
.pages
.iter()
.enumerate()
.map(|(idx, slot)| {
let vaddr = self.vaddr + (idx * PAGE_SIZE_4K);
match slot.as_ref() {
Some(page) => {
let mut new_page = PhysPage::alloc().unwrap();
unsafe {
copy_nonoverlapping(
page.as_ptr(),
new_page.as_mut_ptr(),
PAGE_SIZE_4K,
);
}
page_table
.map(
vaddr,
virt_to_phys(new_page.start_vaddr),
PageSize::Size4K,
self.flags,
)
.unwrap();
Some(new_page)
}
None => {
page_table
.map_fault(vaddr, PageSize::Size4K, self.flags)
.unwrap();
None
}
}
})
.collect();
Ok(Self {
pages,
vaddr: self.vaddr,
flags: self.flags,
backend: self.backend.clone(),
})
}
}
}