1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
//! A naïve sleeping mutex.
use core::cell::UnsafeCell;
use core::fmt;
use core::ops::{Deref, DerefMut};
use core::sync::atomic::{AtomicU64, Ordering};
use axtask::{current, WaitQueue};
/// A mutual exclusion primitive useful for protecting shared data, similar to
/// [`std::sync::Mutex`](https://doc.rust-lang.org/std/sync/struct.Mutex.html).
///
/// When the mutex is locked, the current task will block and be put into the
/// wait queue. When the mutex is unlocked, all tasks waiting on the queue
/// will be woken up.
pub struct Mutex<T: ?Sized> {
wq: WaitQueue,
owner_id: AtomicU64,
data: UnsafeCell<T>,
}
/// A guard that provides mutable data access.
///
/// When the guard falls out of scope it will release the lock.
pub struct MutexGuard<'a, T: ?Sized + 'a> {
lock: &'a Mutex<T>,
data: *mut T,
}
// Same unsafe impls as `std::sync::Mutex`
unsafe impl<T: ?Sized + Send> Sync for Mutex<T> {}
unsafe impl<T: ?Sized + Send> Send for Mutex<T> {}
impl<T> Mutex<T> {
/// Creates a new [`Mutex`] wrapping the supplied data.
#[inline(always)]
pub const fn new(data: T) -> Self {
Self {
wq: WaitQueue::new(),
owner_id: AtomicU64::new(0),
data: UnsafeCell::new(data),
}
}
/// Consumes this [`Mutex`] and unwraps the underlying data.
#[inline(always)]
pub fn into_inner(self) -> T {
// We know statically that there are no outstanding references to
// `self` so there's no need to lock.
let Mutex { data, .. } = self;
data.into_inner()
}
}
impl<T: ?Sized> Mutex<T> {
/// Returns `true` if the lock is currently held.
///
/// # Safety
///
/// This function provides no synchronization guarantees and so its result should be considered 'out of date'
/// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic.
#[inline(always)]
pub fn is_locked(&self) -> bool {
self.owner_id.load(Ordering::Relaxed) != 0
}
/// Locks the [`Mutex`] and returns a guard that permits access to the inner data.
///
/// The returned value may be dereferenced for data access
/// and the lock will be dropped when the guard falls out of scope.
pub fn lock(&self) -> MutexGuard<T> {
let current_id = current().id().as_u64();
loop {
// Can fail to lock even if the spinlock is not locked. May be more efficient than `try_lock`
// when called in a loop.
match self.owner_id.compare_exchange_weak(
0,
current_id,
Ordering::Acquire,
Ordering::Relaxed,
) {
Ok(_) => break,
Err(owner_id) => {
assert_ne!(
owner_id,
current_id,
"{} tried to acquire mutex it already owns.",
current().id_name()
);
// Wait until the lock looks unlocked before retrying
self.wq.wait_until(|| !self.is_locked());
}
}
}
MutexGuard {
lock: self,
data: unsafe { &mut *self.data.get() },
}
}
/// Try to lock this [`Mutex`], returning a lock guard if successful.
#[inline(always)]
pub fn try_lock(&self) -> Option<MutexGuard<T>> {
let current_id = current().id().as_u64();
// The reason for using a strong compare_exchange is explained here:
// https://github.com/Amanieu/parking_lot/pull/207#issuecomment-575869107
if self
.owner_id
.compare_exchange(0, current_id, Ordering::Acquire, Ordering::Relaxed)
.is_ok()
{
Some(MutexGuard {
lock: self,
data: unsafe { &mut *self.data.get() },
})
} else {
None
}
}
/// Force unlock the [`Mutex`].
///
/// # Safety
///
/// This is *extremely* unsafe if the lock is not held by the current
/// thread. However, this can be useful in some instances for exposing
/// the lock to FFI that doesn’t know how to deal with RAII.
pub unsafe fn force_unlock(&self) {
let owner_id = self.owner_id.swap(0, Ordering::Release);
assert_eq!(
owner_id,
current().id().as_u64(),
"{} tried to release mutex it doesn't own",
current().id_name()
);
self.wq.notify_one(true);
}
/// Returns a mutable reference to the underlying data.
///
/// Since this call borrows the [`Mutex`] mutably, and a mutable reference is guaranteed to be exclusive in
/// Rust, no actual locking needs to take place -- the mutable borrow statically guarantees no locks exist. As
/// such, this is a 'zero-cost' operation.
#[inline(always)]
pub fn get_mut(&mut self) -> &mut T {
// We know statically that there are no other references to `self`, so
// there's no need to lock the inner mutex.
unsafe { &mut *self.data.get() }
}
}
impl<T: ?Sized + Default> Default for Mutex<T> {
#[inline(always)]
fn default() -> Self {
Self::new(Default::default())
}
}
impl<T: ?Sized + fmt::Debug> fmt::Debug for Mutex<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.try_lock() {
Some(guard) => write!(f, "Mutex {{ data: ")
.and_then(|()| (*guard).fmt(f))
.and_then(|()| write!(f, "}}")),
None => write!(f, "Mutex {{ <locked> }}"),
}
}
}
impl<'a, T: ?Sized> Deref for MutexGuard<'a, T> {
type Target = T;
#[inline(always)]
fn deref(&self) -> &T {
// We know statically that only we are referencing data
unsafe { &*self.data }
}
}
impl<'a, T: ?Sized> DerefMut for MutexGuard<'a, T> {
#[inline(always)]
fn deref_mut(&mut self) -> &mut T {
// We know statically that only we are referencing data
unsafe { &mut *self.data }
}
}
impl<'a, T: ?Sized + fmt::Debug> fmt::Debug for MutexGuard<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<'a, T: ?Sized> Drop for MutexGuard<'a, T> {
/// The dropping of the [`MutexGuard`] will release the lock it was created from.
fn drop(&mut self) {
unsafe { self.lock.force_unlock() }
}
}
#[cfg(test)]
mod tests {
use crate::Mutex;
use axtask as thread;
use std::sync::Once;
static INIT: Once = Once::new();
fn may_interrupt() {
// simulate interrupts
if rand::random::<u32>() % 3 == 0 {
thread::yield_now();
}
}
#[test]
fn lots_and_lots() {
INIT.call_once(thread::init_scheduler);
const NUM_TASKS: u32 = 10;
const NUM_ITERS: u32 = 10_000;
static M: Mutex<u32> = Mutex::new(0);
fn inc(delta: u32) {
for _ in 0..NUM_ITERS {
let mut val = M.lock();
*val += delta;
may_interrupt();
drop(val);
may_interrupt();
}
}
for _ in 0..NUM_TASKS {
thread::spawn(|| inc(1));
thread::spawn(|| inc(2));
}
println!("spawn OK");
loop {
let val = M.lock();
if *val == NUM_ITERS * NUM_TASKS * 3 {
break;
}
may_interrupt();
drop(val);
may_interrupt();
}
assert_eq!(*M.lock(), NUM_ITERS * NUM_TASKS * 3);
println!("Mutex test OK");
}
}