1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
// SPDX-License-Identifier: GPL-2.0
//! Intrusive circular doubly-linked lists.
//!
//! Copied from linux/rust/kernel/unsafe_list.rs.
//!
//! We don't use the C version for two main reasons:
//! - Next/prev pointers do not support `?Sized` types, so wouldn't be able to have a list of, for
//! example, `dyn Trait`.
//! - It would require the list head to be pinned (in addition to the list entries).
use core::{cell::UnsafeCell, iter, marker::PhantomPinned, mem::MaybeUninit, ptr::NonNull};
/// An intrusive circular doubly-linked list.
///
/// Membership of elements of the list must be tracked by the owner of the list.
///
/// While elements of the list must remain pinned while in the list, the list itself does not
/// require pinning. In other words, users are allowed to move instances of [`List`].
///
/// # Invariants
///
/// The links of an entry are wrapped in [`UnsafeCell`] and they are acessible when the list itself
/// is. For example, when a thread has a mutable reference to a list, it may also safely get
/// mutable references to the links of the elements in the list.
///
/// The links of an entry are also wrapped in [`MaybeUninit`] and they are initialised when they
/// are present in a list. Otherwise they are uninitialised.
///
/// # Examples
///
/// ```
/// # use linked_list::unsafe_list::{Adapter, Links, List};
///
/// struct Example {
/// v: usize,
/// links: Links<Example>,
/// }
///
/// // SAFETY: This adapter is the only one that uses `Example::links`.
/// unsafe impl Adapter for Example {
/// type EntryType = Self;
/// fn to_links(obj: &Self) -> &Links<Self> {
/// &obj.links
/// }
/// }
///
/// let a = Example {
/// v: 0,
/// links: Links::new(),
/// };
/// let b = Example {
/// v: 1,
/// links: Links::new(),
/// };
///
/// let mut list = List::<Example>::new();
/// assert!(list.is_empty());
///
/// // SAFETY: `a` was declared above, it's not in any lists yet, is never moved, and outlives the
/// // list.
/// unsafe { list.push_back(&a) };
///
/// // SAFETY: `b` was declared above, it's not in any lists yet, is never moved, and outlives the
/// // list.
/// unsafe { list.push_back(&b) };
///
/// assert!(core::ptr::eq(&a, list.front().unwrap().as_ptr()));
/// assert!(core::ptr::eq(&b, list.back().unwrap().as_ptr()));
///
/// for (i, e) in list.iter().enumerate() {
/// assert_eq!(i, e.v);
/// }
///
/// for e in &list {
/// println!("{}", e.v);
/// }
///
/// // SAFETY: `b` was added to the list above and wasn't removed yet.
/// unsafe { list.remove(&b) };
///
/// assert!(core::ptr::eq(&a, list.front().unwrap().as_ptr()));
/// assert!(core::ptr::eq(&a, list.back().unwrap().as_ptr()));
/// ```
pub struct List<A: Adapter + ?Sized> {
first: Option<NonNull<A::EntryType>>,
}
// SAFETY: The list is itself can be safely sent to other threads but we restrict it to being `Send`
// only when its entries are also `Send`.
unsafe impl<A: Adapter + ?Sized> Send for List<A> where A::EntryType: Send {}
// SAFETY: The list is itself usable from other threads via references but we restrict it to being
// `Sync` only when its entries are also `Sync`.
unsafe impl<A: Adapter + ?Sized> Sync for List<A> where A::EntryType: Sync {}
impl<A: Adapter + ?Sized> List<A> {
/// Constructs a new empty list.
pub const fn new() -> Self {
Self { first: None }
}
/// Determines if the list is empty.
pub const fn is_empty(&self) -> bool {
self.first.is_none()
}
/// Inserts the only entry to a list.
///
/// This must only be called when the list is empty.
pub fn insert_only_entry(&mut self, obj: &A::EntryType) {
let obj_ptr = NonNull::from(obj);
// SAFETY: We have mutable access to the list, so we also have access to the entry
// we're about to insert (and it's not in any other lists per the function safety
// requirements).
let obj_inner = unsafe { &mut *A::to_links(obj).0.get() };
// INVARIANTS: All fields of the links of the newly-inserted object are initialised
// below.
obj_inner.write(LinksInner {
next: obj_ptr,
prev: obj_ptr,
_pin: PhantomPinned,
});
self.first = Some(obj_ptr);
}
/// Adds the given object to the end of the list.
///
/// # Safety
///
/// Callers must ensure that:
/// - The object is not currently in any lists.
/// - The object remains alive until it is removed from the list.
/// - The object is not moved until it is removed from the list.
pub unsafe fn push_back(&mut self, obj: &A::EntryType) {
if let Some(first) = self.first {
// SAFETY: The previous entry to the first one is necessarily present in the list (it
// may in fact be the first entry itself as this is a circular list). The safety
// requirements of this function regarding `obj` satisfy those of `insert_after`.
unsafe { self.insert_after(self.inner_ref(first).prev, obj) };
} else {
self.insert_only_entry(obj);
}
}
/// Adds the given object to the beginning of the list.
///
/// # Safety
///
/// Callers must ensure that:
/// - The object is not currently in any lists.
/// - The object remains alive until it is removed from the list.
/// - The object is not moved until it is removed from the list.
pub unsafe fn push_front(&mut self, obj: &A::EntryType) {
if let Some(first) = self.first {
// SAFETY: The safety requirements of this function regarding `obj` satisfy those of
// `insert_before`. Additionally, `first` is in the list.
unsafe { self.insert_before(first, obj) };
} else {
self.insert_only_entry(obj);
}
}
/// Removes the given object from the list.
///
/// # Safety
///
/// The object must be in the list. In other words, the object must have previously been
/// inserted into this list and not removed yet.
pub unsafe fn remove(&mut self, entry: &A::EntryType) {
// SAFETY: Per the function safety requirements, `entry` is in the list.
let inner = unsafe { self.inner_ref(NonNull::from(entry)) };
let next = inner.next;
let prev = inner.prev;
// SAFETY: We have mutable access to the list, so we also have access to the entry we're
// about to remove (which we know is in the list per the function safety requirements).
let inner = unsafe { &mut *A::to_links(entry).0.get() };
// SAFETY: Since the entry was in the list, it was initialised.
unsafe { inner.assume_init_drop() };
if core::ptr::eq(next.as_ptr(), entry) {
// Removing the only element.
self.first = None;
} else {
// SAFETY: `prev` is in the list because it is pointed at by the entry being removed.
unsafe { self.inner(prev).next = next };
// SAFETY: `next` is in the list because it is pointed at by the entry being removed.
unsafe { self.inner(next).prev = prev };
if core::ptr::eq(self.first.unwrap().as_ptr(), entry) {
// Update the pointer to the first element as we're removing it.
self.first = Some(next);
}
}
}
/// Adds the given object after another object already in the list.
///
/// # Safety
///
/// Callers must ensure that:
/// - The existing object is currently in the list.
/// - The new object is not currently in any lists.
/// - The new object remains alive until it is removed from the list.
/// - The new object is not moved until it is removed from the list.
pub unsafe fn insert_after(&mut self, existing: NonNull<A::EntryType>, new: &A::EntryType) {
// SAFETY: We have mutable access to the list, so we also have access to the entry we're
// about to insert (and it's not in any other lists per the function safety requirements).
let new_inner = unsafe { &mut *A::to_links(new).0.get() };
// SAFETY: Per the function safety requirements, `existing` is in the list.
let existing_inner = unsafe { self.inner(existing) };
let next = existing_inner.next;
// INVARIANTS: All fields of the links of the newly-inserted object are initialised below.
new_inner.write(LinksInner {
next,
prev: existing,
_pin: PhantomPinned,
});
existing_inner.next = NonNull::from(new);
// SAFETY: `next` is in the list because it's pointed at by the existing entry.
unsafe { self.inner(next).prev = NonNull::from(new) };
}
/// Adds the given object before another object already in the list.
///
/// # Safety
///
/// Callers must ensure that:
/// - The existing object is currently in the list.
/// - The new object is not currently in any lists.
/// - The new object remains alive until it is removed from the list.
/// - The new object is not moved until it is removed from the list.
pub unsafe fn insert_before(&mut self, existing: NonNull<A::EntryType>, new: &A::EntryType) {
// SAFETY: The safety requirements of this function satisfy those of `insert_after`.
unsafe { self.insert_after(self.inner_ref(existing).prev, new) };
if self.first.unwrap() == existing {
// Update the pointer to the first element as we're inserting before it.
self.first = Some(NonNull::from(new));
}
}
/// Returns the first element of the list, if one exists.
pub fn front(&self) -> Option<NonNull<A::EntryType>> {
self.first
}
/// Returns the last element of the list, if one exists.
pub fn back(&self) -> Option<NonNull<A::EntryType>> {
// SAFETY: Having a pointer to it guarantees that the object is in the list.
self.first.map(|f| unsafe { self.inner_ref(f).prev })
}
/// Returns an iterator for the list starting at the first entry.
pub fn iter(&self) -> Iterator<'_, A> {
Iterator::new(self.cursor_front())
}
/// Returns an iterator for the list starting at the last entry.
pub fn iter_back(&self) -> impl iter::DoubleEndedIterator<Item = &'_ A::EntryType> {
Iterator::new(self.cursor_back())
}
/// Returns a cursor starting on the first (front) element of the list.
pub fn cursor_front(&self) -> Cursor<'_, A> {
// SAFETY: `front` is in the list (or is `None`) because we've read it from the list head
// and the list cannot have changed because we hold a shared reference to it.
unsafe { Cursor::new(self, self.front()) }
}
/// Returns a cursor starting on the last (back) element of the list.
pub fn cursor_back(&self) -> Cursor<'_, A> {
// SAFETY: `back` is in the list (or is `None`) because we've read it from the list head
// and the list cannot have changed because we hold a shared reference to it.
unsafe { Cursor::new(self, self.back()) }
}
/// Returns a mutable reference to the links of a given object.
///
/// # Safety
///
/// Callers must ensure that the element is in the list.
unsafe fn inner(&mut self, ptr: NonNull<A::EntryType>) -> &mut LinksInner<A::EntryType> {
// SAFETY: The safety requirements guarantee that we the links are initialised because
// that's part of the type invariants. Additionally, the type invariants also guarantee
// that having a mutable reference to the list guarantees that the links are mutably
// accessible as well.
unsafe { (*A::to_links(ptr.as_ref()).0.get()).assume_init_mut() }
}
/// Returns a shared reference to the links of a given object.
///
/// # Safety
///
/// Callers must ensure that the element is in the list.
unsafe fn inner_ref(&self, ptr: NonNull<A::EntryType>) -> &LinksInner<A::EntryType> {
// SAFETY: The safety requirements guarantee that we the links are initialised because
// that's part of the type invariants. Additionally, the type invariants also guarantee
// that having a shared reference to the list guarantees that the links are accessible in
// shared mode as well.
unsafe { (*A::to_links(ptr.as_ref()).0.get()).assume_init_ref() }
}
}
impl<'a, A: Adapter + ?Sized> iter::IntoIterator for &'a List<A> {
type Item = &'a A::EntryType;
type IntoIter = Iterator<'a, A>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
/// An iterator for the linked list.
pub struct Iterator<'a, A: Adapter + ?Sized> {
cursor: Cursor<'a, A>,
}
impl<'a, A: Adapter + ?Sized> Iterator<'a, A> {
fn new(cursor: Cursor<'a, A>) -> Self {
Self { cursor }
}
}
impl<'a, A: Adapter + ?Sized> iter::Iterator for Iterator<'a, A> {
type Item = &'a A::EntryType;
fn next(&mut self) -> Option<Self::Item> {
let ret = self.cursor.current()?;
self.cursor.move_next();
Some(ret)
}
}
impl<A: Adapter + ?Sized> iter::DoubleEndedIterator for Iterator<'_, A> {
fn next_back(&mut self) -> Option<Self::Item> {
let ret = self.cursor.current()?;
self.cursor.move_prev();
Some(ret)
}
}
/// A linked-list adapter.
///
/// It is a separate type (as opposed to implemented by the type of the elements of the list)
/// so that a given type can be inserted into multiple lists at the same time; in such cases, each
/// list needs its own adapter that returns a different pointer to links.
///
/// It may, however, be implemented by the type itself to be inserted into lists, which makes it
/// more readable.
///
/// # Safety
///
/// Implementers must ensure that the links returned by [`Adapter::to_links`] are unique to the
/// adapter. That is, different adapters must return different links for a given object.
///
/// The reason for this requirement is to avoid confusion that may lead to UB. In particular, if
/// two adapters were to use the same links, a user may have two lists (one for each adapter) and
/// try to insert the same object into both at the same time; although this clearly violates the
/// list safety requirements (e.g., those in [`List::push_back`]), for users to notice it, they'd
/// have to dig into the details of the two adapters.
///
/// By imposing the requirement on the adapter, we make it easier for users to check compliance
/// with the requirements when using the list.
///
/// # Examples
///
/// ```
/// # use linked_list::unsafe_list::{Adapter, Links, List};
///
/// struct Example {
/// a: u32,
/// b: u32,
/// links1: Links<Example>,
/// links2: Links<Example>,
/// }
///
/// // SAFETY: This adapter is the only one that uses `Example::links1`.
/// unsafe impl Adapter for Example {
/// type EntryType = Self;
/// fn to_links(obj: &Self) -> &Links<Self> {
/// &obj.links1
/// }
/// }
///
/// struct ExampleAdapter;
///
/// // SAFETY: This adapter is the only one that uses `Example::links2`.
/// unsafe impl Adapter for ExampleAdapter {
/// type EntryType = Example;
/// fn to_links(obj: &Example) -> &Links<Example> {
/// &obj.links2
/// }
/// }
///
/// static LIST1: List<Example> = List::new();
/// static LIST2: List<ExampleAdapter> = List::new();
/// ```
pub unsafe trait Adapter {
/// The type of the enties in the list.
type EntryType: ?Sized;
/// Retrieves the linked list links for the given object.
fn to_links(obj: &Self::EntryType) -> &Links<Self::EntryType>;
}
struct LinksInner<T: ?Sized> {
next: NonNull<T>,
prev: NonNull<T>,
_pin: PhantomPinned,
}
/// Links of a linked list.
///
/// List entries need one of these per concurrent list.
pub struct Links<T: ?Sized>(UnsafeCell<MaybeUninit<LinksInner<T>>>);
// SAFETY: `Links` can be safely sent to other threads but we restrict it to being `Send` only when
// the list entries it points to are also `Send`.
unsafe impl<T: ?Sized> Send for Links<T> {}
// SAFETY: `Links` is usable from other threads via references but we restrict it to being `Sync`
// only when the list entries it points to are also `Sync`.
unsafe impl<T: ?Sized> Sync for Links<T> {}
impl<T: ?Sized> Links<T> {
/// Constructs a new instance of the linked-list links.
pub const fn new() -> Self {
Self(UnsafeCell::new(MaybeUninit::uninit()))
}
}
pub(crate) struct CommonCursor<A: Adapter + ?Sized> {
pub(crate) cur: Option<NonNull<A::EntryType>>,
}
impl<A: Adapter + ?Sized> CommonCursor<A> {
pub(crate) fn new(cur: Option<NonNull<A::EntryType>>) -> Self {
Self { cur }
}
/// Moves the cursor to the next entry of the list.
///
/// # Safety
///
/// Callers must ensure that the cursor is either [`None`] or points to an entry that is in
/// `list`.
pub(crate) unsafe fn move_next(&mut self, list: &List<A>) {
match self.cur.take() {
None => self.cur = list.first,
Some(cur) => {
if let Some(head) = list.first {
// SAFETY: Per the function safety requirements, `cur` is in the list.
let links = unsafe { list.inner_ref(cur) };
if links.next != head {
self.cur = Some(links.next);
}
}
}
}
}
/// Moves the cursor to the previous entry of the list.
///
/// # Safety
///
/// Callers must ensure that the cursor is either [`None`] or points to an entry that is in
/// `list`.
pub(crate) unsafe fn move_prev(&mut self, list: &List<A>) {
match list.first {
None => self.cur = None,
Some(head) => {
let next = match self.cur.take() {
None => head,
Some(cur) => {
if cur == head {
return;
}
cur
}
};
// SAFETY: `next` is either `head` or `cur`. The former is in the list because it's
// its head; the latter is in the list per the function safety requirements.
self.cur = Some(unsafe { list.inner_ref(next) }.prev);
}
}
}
}
/// A list cursor that allows traversing a linked list and inspecting elements.
pub struct Cursor<'a, A: Adapter + ?Sized> {
cursor: CommonCursor<A>,
list: &'a List<A>,
}
impl<'a, A: Adapter + ?Sized> Cursor<'a, A> {
/// Creates a new cursor.
///
/// # Safety
///
/// Callers must ensure that `cur` is either [`None`] or points to an entry in `list`.
pub(crate) unsafe fn new(list: &'a List<A>, cur: Option<NonNull<A::EntryType>>) -> Self {
Self {
list,
cursor: CommonCursor::new(cur),
}
}
/// Returns the element the cursor is currently positioned on.
pub fn current(&self) -> Option<&'a A::EntryType> {
let cur = self.cursor.cur?;
// SAFETY: `cursor` starts off in the list and only changes within the list. Additionally,
// the list cannot change because we hold a shared reference to it, so the cursor is always
// within the list.
Some(unsafe { cur.as_ref() })
}
/// Moves the cursor to the next element.
pub fn move_next(&mut self) {
// SAFETY: `cursor` starts off in the list and only changes within the list. Additionally,
// the list cannot change because we hold a shared reference to it, so the cursor is always
// within the list.
unsafe { self.cursor.move_next(self.list) };
}
/// Moves the cursor to the previous element.
pub fn move_prev(&mut self) {
// SAFETY: `cursor` starts off in the list and only changes within the list. Additionally,
// the list cannot change because we hold a shared reference to it, so the cursor is always
// within the list.
unsafe { self.cursor.move_prev(self.list) };
}
}
#[cfg(test)]
mod tests {
extern crate alloc;
use alloc::{boxed::Box, vec::Vec};
use core::ptr::NonNull;
struct Example {
links: super::Links<Self>,
}
// SAFETY: This is the only adapter that uses `Example::links`.
unsafe impl super::Adapter for Example {
type EntryType = Self;
fn to_links(obj: &Self) -> &super::Links<Self> {
&obj.links
}
}
fn build_vector(size: usize) -> Vec<Box<Example>> {
let mut v = Vec::new();
v.reserve(size);
for _ in 0..size {
v.push(Box::new(Example {
links: super::Links::new(),
}));
}
v
}
#[track_caller]
fn assert_list_contents(v: &[Box<Example>], list: &super::List<Example>) {
let n = v.len();
// Assert that the list is ok going forward.
let mut count = 0;
for (i, e) in list.iter().enumerate() {
assert!(core::ptr::eq(e, &*v[i]));
count += 1;
}
assert_eq!(count, n);
// Assert that the list is ok going backwards.
let mut count = 0;
for (i, e) in list.iter_back().rev().enumerate() {
assert!(core::ptr::eq(e, &*v[n - 1 - i]));
count += 1;
}
assert_eq!(count, n);
}
#[track_caller]
fn test_each_element(
min_len: usize,
max_len: usize,
test: impl Fn(&mut Vec<Box<Example>>, &mut super::List<Example>, usize, Box<Example>),
) {
for n in min_len..=max_len {
for i in 0..n {
let extra = Box::new(Example {
links: super::Links::new(),
});
let mut v = build_vector(n);
let mut list = super::List::<Example>::new();
// Build list.
for j in 0..n {
// SAFETY: The entry was allocated above, it's not in any lists yet, is never
// moved, and outlives the list.
unsafe { list.push_back(&v[j]) };
}
// Call the test case.
test(&mut v, &mut list, i, extra);
// Check that the list is ok.
assert_list_contents(&v, &list);
}
}
}
#[test]
fn test_push_back() {
const MAX: usize = 10;
let v = build_vector(MAX);
let mut list = super::List::<Example>::new();
for n in 1..=MAX {
// SAFETY: The entry was allocated above, it's not in any lists yet, is never moved,
// and outlives the list.
unsafe { list.push_back(&v[n - 1]) };
assert_list_contents(&v[..n], &list);
}
}
#[test]
fn test_push_front() {
const MAX: usize = 10;
let v = build_vector(MAX);
let mut list = super::List::<Example>::new();
for n in 1..=MAX {
// SAFETY: The entry was allocated above, it's not in any lists yet, is never moved,
// and outlives the list.
unsafe { list.push_front(&v[MAX - n]) };
assert_list_contents(&v[MAX - n..], &list);
}
}
#[test]
fn test_one_removal() {
test_each_element(1, 10, |v, list, i, _| {
// Remove the i-th element.
// SAFETY: The i-th element was added to the list above, and wasn't removed yet.
unsafe { list.remove(&v[i]) };
v.remove(i);
});
}
#[test]
fn test_one_insert_after() {
test_each_element(1, 10, |v, list, i, extra| {
// Insert after the i-th element.
// SAFETY: The i-th element was added to the list above, and wasn't removed yet.
// Additionally, the new element isn't in any list yet, isn't moved, and outlives
// the list.
unsafe { list.insert_after(NonNull::from(&*v[i]), &*extra) };
v.insert(i + 1, extra);
});
}
#[test]
fn test_one_insert_before() {
test_each_element(1, 10, |v, list, i, extra| {
// Insert before the i-th element.
// SAFETY: The i-th element was added to the list above, and wasn't removed yet.
// Additionally, the new element isn't in any list yet, isn't moved, and outlives
// the list.
unsafe { list.insert_before(NonNull::from(&*v[i]), &*extra) };
v.insert(i, extra);
});
}
}