1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
//! The type of ratios and related operations.
//!
//! A **ratio** is the result of dividing two integers, i.e., the numerator and
//! denominator.
//!
//! # Examples
//!
//! ```
//! use ratio::Ratio;
//!
//! let ratio = Ratio::new(1, 3); // 1 / 3
//! assert_eq!(ratio.mul_trunc(20), 6); // trunc(20 * 1 / 3) = trunc(6.66..) = 6
//! assert_eq!(ratio.mul_round(20), 7); // round(20 * 1 / 3) = round(6.66..) = 7
//! println!("{:?}", ratio); // Ratio(1/3 ~= 1431655765/4294967296)
//! ```
#![cfg_attr(not(test), no_std)]
use core::{cmp::PartialEq, fmt};
/// The ratio type.
///
/// It converts `numerator / denominator` to `mult / (1 << shift)` to avoid
/// `u128` division on calculation. The `shift` is as large as possible to
/// improve precision.
///
/// Currently, it only supports `u32` as the numerator and denominator.
pub struct Ratio {
numerator: u32,
denominator: u32,
mult: u32,
shift: u32,
}
impl Ratio {
/// The zero ratio.
pub const fn zero() -> Self {
Self {
numerator: 0,
denominator: 0,
mult: 0,
shift: 0,
}
}
/// Creates a new ratio `numerator / denominator`.
pub const fn new(numerator: u32, denominator: u32) -> Self {
assert!(!(denominator == 0 && numerator != 0));
if numerator == 0 {
return Self {
numerator,
denominator,
mult: 0,
shift: 0,
};
}
// numerator / denominator == (numerator * (1 << shift) / denominator) / (1 << shift)
let mut shift = 32;
let mut mult;
loop {
mult = (((numerator as u64) << shift) + denominator as u64 / 2) / denominator as u64;
if mult <= u32::MAX as u64 || shift == 0 {
break;
}
shift -= 1;
}
while mult % 2 == 0 && shift > 0 {
mult /= 2;
shift -= 1;
}
Self {
numerator,
denominator,
mult: mult as u32,
shift,
}
}
/// Get the inverse ratio.
///
/// # Examples
///
/// ```
/// use ratio::Ratio;
///
/// let ratio = Ratio::new(1, 2);
/// assert_eq!(ratio.inverse(), Ratio::new(2, 1));
/// ```
pub const fn inverse(&self) -> Self {
Self::new(self.denominator, self.numerator)
}
/// Multiplies the ratio by a value and rounds the result down.
///
/// # Examples
///
/// ```
/// use ratio::Ratio;
///
/// let ratio = Ratio::new(2, 3);
/// assert_eq!(ratio.mul_trunc(99), 66); // 99 * 2 / 3 = 66
/// assert_eq!(ratio.mul_trunc(100), 66); // trunc(100 * 2 / 3) = trunc(66.66...) = 66
/// ```
pub const fn mul_trunc(&self, value: u64) -> u64 {
((value as u128 * self.mult as u128) >> self.shift) as u64
}
/// Multiplies the ratio by a value and rounds the result to the nearest
/// whole number.
///
/// # Examples
///
/// ```
/// use ratio::Ratio;
///
/// let ratio = Ratio::new(2, 3);
/// assert_eq!(ratio.mul_round(99), 66); // 99 * 2 / 3 = 66
/// assert_eq!(ratio.mul_round(100), 67); // round(100 * 2 / 3) = round(66.66...) = 67
/// ```
pub const fn mul_round(&self, value: u64) -> u64 {
((value as u128 * self.mult as u128 + (1 << self.shift >> 1)) >> self.shift) as u64
}
}
impl fmt::Debug for Ratio {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"Ratio({}/{} ~= {}/{})",
self.numerator,
self.denominator,
self.mult,
1u64 << self.shift
)
}
}
impl PartialEq<Ratio> for Ratio {
#[inline]
fn eq(&self, other: &Ratio) -> bool {
self.mult == other.mult && self.shift == other.shift
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_ratio() {
let a = Ratio::new(625_000, 1_000_000);
let b = Ratio::new(1, u32::MAX);
let c = Ratio::new(u32::MAX, u32::MAX);
let d = Ratio::new(u32::MAX, 1);
assert_eq!(a.mult, 5);
assert_eq!(a.shift, 3);
assert_eq!(a.mul_trunc(800), 500);
assert_eq!(b.mult, 1);
assert_eq!(b.shift, 32);
assert_eq!(b.mul_trunc(u32::MAX as _), 0);
assert_eq!(b.mul_round(u32::MAX as _), 1);
assert_eq!(c.mult, 1);
assert_eq!(c.shift, 0);
assert_eq!(c.mul_trunc(u32::MAX as _), u32::MAX as _);
println!("{:?}", a);
println!("{:?}", b);
println!("{:?}", c);
println!("{:?}", d);
}
#[test]
fn test_zero() {
let z1 = Ratio::new(0, 100);
let z2 = Ratio::zero();
let z3 = Ratio::new(0, 0);
assert_eq!(z1.mul_trunc(233), 0);
assert_eq!(z2.mul_trunc(0), 0);
assert_eq!(z3.mul_round(456), 0);
}
}