1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
//! A naïve spinning mutex.
//!
//! Waiting threads hammer an atomic variable until it becomes available. Best-case latency is low, but worst-case
//! latency is theoretically infinite.
//!
//! Based on [`spin::Mutex`](https://docs.rs/spin/latest/src/spin/mutex/spin.rs.html).
use core::cell::UnsafeCell;
use core::fmt;
use core::marker::PhantomData;
use core::ops::{Deref, DerefMut};
#[cfg(feature = "smp")]
use core::sync::atomic::{AtomicBool, Ordering};
use kernel_guard::BaseGuard;
/// A [spin lock](https://en.m.wikipedia.org/wiki/Spinlock) providing mutually
/// exclusive access to data.
///
/// This is a base struct, the specific behavior depends on the generic
/// parameter `G` that implements [`BaseGuard`], such as whether to disable
/// local IRQs or kernel preemption before acquiring the lock.
///
/// For single-core environment (without the "smp" feature), we remove the lock
/// state, CPU can always get the lock if we follow the proper guard in use.
pub struct BaseSpinLock<G: BaseGuard, T: ?Sized> {
_phantom: PhantomData<G>,
#[cfg(feature = "smp")]
lock: AtomicBool,
data: UnsafeCell<T>,
}
/// A guard that provides mutable data access.
///
/// When the guard falls out of scope it will release the lock.
pub struct BaseSpinLockGuard<'a, G: BaseGuard, T: ?Sized + 'a> {
_phantom: &'a PhantomData<G>,
irq_state: G::State,
data: *mut T,
#[cfg(feature = "smp")]
lock: &'a AtomicBool,
}
// Same unsafe impls as `std::sync::Mutex`
unsafe impl<G: BaseGuard, T: ?Sized + Send> Sync for BaseSpinLock<G, T> {}
unsafe impl<G: BaseGuard, T: ?Sized + Send> Send for BaseSpinLock<G, T> {}
impl<G: BaseGuard, T> BaseSpinLock<G, T> {
/// Creates a new [`BaseSpinLock`] wrapping the supplied data.
#[inline(always)]
pub const fn new(data: T) -> Self {
Self {
_phantom: PhantomData,
data: UnsafeCell::new(data),
#[cfg(feature = "smp")]
lock: AtomicBool::new(false),
}
}
/// Consumes this [`BaseSpinLock`] and unwraps the underlying data.
#[inline(always)]
pub fn into_inner(self) -> T {
// We know statically that there are no outstanding references to
// `self` so there's no need to lock.
let BaseSpinLock { data, .. } = self;
data.into_inner()
}
}
impl<G: BaseGuard, T: ?Sized> BaseSpinLock<G, T> {
/// Locks the [`BaseSpinLock`] and returns a guard that permits access to the inner data.
///
/// The returned value may be dereferenced for data access
/// and the lock will be dropped when the guard falls out of scope.
#[inline(always)]
pub fn lock(&self) -> BaseSpinLockGuard<G, T> {
let irq_state = G::acquire();
#[cfg(feature = "smp")]
{
// Can fail to lock even if the spinlock is not locked. May be more efficient than `try_lock`
// when called in a loop.
while self
.lock
.compare_exchange_weak(false, true, Ordering::Acquire, Ordering::Relaxed)
.is_err()
{
// Wait until the lock looks unlocked before retrying
while self.is_locked() {
core::hint::spin_loop();
}
}
}
BaseSpinLockGuard {
_phantom: &PhantomData,
irq_state,
data: unsafe { &mut *self.data.get() },
#[cfg(feature = "smp")]
lock: &self.lock,
}
}
/// Returns `true` if the lock is currently held.
///
/// # Safety
///
/// This function provides no synchronization guarantees and so its result should be considered 'out of date'
/// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic.
#[inline(always)]
pub fn is_locked(&self) -> bool {
cfg_if::cfg_if! {
if #[cfg(feature = "smp")] {
self.lock.load(Ordering::Relaxed)
} else {
false
}
}
}
/// Try to lock this [`BaseSpinLock`], returning a lock guard if successful.
#[inline(always)]
pub fn try_lock(&self) -> Option<BaseSpinLockGuard<G, T>> {
let irq_state = G::acquire();
cfg_if::cfg_if! {
if #[cfg(feature = "smp")] {
// The reason for using a strong compare_exchange is explained here:
// https://github.com/Amanieu/parking_lot/pull/207#issuecomment-575869107
let is_unlocked = self
.lock
.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed)
.is_ok();
} else {
let is_unlocked = true;
}
}
if is_unlocked {
Some(BaseSpinLockGuard {
_phantom: &PhantomData,
irq_state,
data: unsafe { &mut *self.data.get() },
#[cfg(feature = "smp")]
lock: &self.lock,
})
} else {
None
}
}
/// Force unlock this [`BaseSpinLock`].
///
/// # Safety
///
/// This is *extremely* unsafe if the lock is not held by the current
/// thread. However, this can be useful in some instances for exposing the
/// lock to FFI that doesn't know how to deal with RAII.
#[inline(always)]
pub unsafe fn force_unlock(&self) {
#[cfg(feature = "smp")]
self.lock.store(false, Ordering::Release);
}
/// Returns a mutable reference to the underlying data.
///
/// Since this call borrows the [`BaseSpinLock`] mutably, and a mutable reference is guaranteed to be exclusive in
/// Rust, no actual locking needs to take place -- the mutable borrow statically guarantees no locks exist. As
/// such, this is a 'zero-cost' operation.
#[inline(always)]
pub fn get_mut(&mut self) -> &mut T {
// We know statically that there are no other references to `self`, so
// there's no need to lock the inner mutex.
unsafe { &mut *self.data.get() }
}
}
impl<G: BaseGuard, T: ?Sized + Default> Default for BaseSpinLock<G, T> {
#[inline(always)]
fn default() -> Self {
Self::new(Default::default())
}
}
impl<G: BaseGuard, T: ?Sized + fmt::Debug> fmt::Debug for BaseSpinLock<G, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.try_lock() {
Some(guard) => write!(f, "SpinLock {{ data: ")
.and_then(|()| (*guard).fmt(f))
.and_then(|()| write!(f, "}}")),
None => write!(f, "SpinLock {{ <locked> }}"),
}
}
}
impl<'a, G: BaseGuard, T: ?Sized> Deref for BaseSpinLockGuard<'a, G, T> {
type Target = T;
#[inline(always)]
fn deref(&self) -> &T {
// We know statically that only we are referencing data
unsafe { &*self.data }
}
}
impl<'a, G: BaseGuard, T: ?Sized> DerefMut for BaseSpinLockGuard<'a, G, T> {
#[inline(always)]
fn deref_mut(&mut self) -> &mut T {
// We know statically that only we are referencing data
unsafe { &mut *self.data }
}
}
impl<'a, G: BaseGuard, T: ?Sized + fmt::Debug> fmt::Debug for BaseSpinLockGuard<'a, G, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<'a, G: BaseGuard, T: ?Sized> Drop for BaseSpinLockGuard<'a, G, T> {
/// The dropping of the [`BaseSpinLockGuard`] will release the lock it was
/// created from.
#[inline(always)]
fn drop(&mut self) {
#[cfg(feature = "smp")]
self.lock.store(false, Ordering::Release);
G::release(self.irq_state);
}
}
#[cfg(test)]
mod tests {
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::mpsc::channel;
use std::sync::Arc;
use std::thread;
type SpinMutex<T> = crate::SpinRaw<T>;
#[derive(Eq, PartialEq, Debug)]
struct NonCopy(i32);
#[test]
fn smoke() {
let m = SpinMutex::<_>::new(());
drop(m.lock());
drop(m.lock());
}
#[test]
#[cfg(feature = "smp")]
fn lots_and_lots() {
static M: SpinMutex<()> = SpinMutex::<_>::new(());
static mut CNT: u32 = 0;
const J: u32 = 1000;
const K: u32 = 3;
fn inc() {
for _ in 0..J {
unsafe {
let _g = M.lock();
CNT += 1;
}
}
}
let (tx, rx) = channel();
let mut ts = Vec::new();
for _ in 0..K {
let tx2 = tx.clone();
ts.push(thread::spawn(move || {
inc();
tx2.send(()).unwrap();
}));
let tx2 = tx.clone();
ts.push(thread::spawn(move || {
inc();
tx2.send(()).unwrap();
}));
}
drop(tx);
for _ in 0..2 * K {
rx.recv().unwrap();
}
assert_eq!(unsafe { CNT }, J * K * 2);
for t in ts {
t.join().unwrap();
}
}
#[test]
#[cfg(feature = "smp")]
fn try_lock() {
let mutex = SpinMutex::<_>::new(42);
// First lock succeeds
let a = mutex.try_lock();
assert_eq!(a.as_ref().map(|r| **r), Some(42));
// Additional lock fails
let b = mutex.try_lock();
assert!(b.is_none());
// After dropping lock, it succeeds again
::core::mem::drop(a);
let c = mutex.try_lock();
assert_eq!(c.as_ref().map(|r| **r), Some(42));
}
#[test]
fn test_into_inner() {
let m = SpinMutex::<_>::new(NonCopy(10));
assert_eq!(m.into_inner(), NonCopy(10));
}
#[test]
fn test_into_inner_drop() {
struct Foo(Arc<AtomicUsize>);
impl Drop for Foo {
fn drop(&mut self) {
self.0.fetch_add(1, Ordering::SeqCst);
}
}
let num_drops = Arc::new(AtomicUsize::new(0));
let m = SpinMutex::<_>::new(Foo(num_drops.clone()));
assert_eq!(num_drops.load(Ordering::SeqCst), 0);
{
let _inner = m.into_inner();
assert_eq!(num_drops.load(Ordering::SeqCst), 0);
}
assert_eq!(num_drops.load(Ordering::SeqCst), 1);
}
#[test]
fn test_mutex_arc_nested() {
// Tests nested mutexes and access
// to underlying data.
let arc = Arc::new(SpinMutex::<_>::new(1));
let arc2 = Arc::new(SpinMutex::<_>::new(arc));
let (tx, rx) = channel();
let t = thread::spawn(move || {
let lock = arc2.lock();
let lock2 = lock.lock();
assert_eq!(*lock2, 1);
tx.send(()).unwrap();
});
rx.recv().unwrap();
t.join().unwrap();
}
#[test]
fn test_mutex_arc_access_in_unwind() {
let arc = Arc::new(SpinMutex::<_>::new(1));
let arc2 = arc.clone();
let _ = thread::spawn(move || {
struct Unwinder {
i: Arc<SpinMutex<i32>>,
}
impl Drop for Unwinder {
fn drop(&mut self) {
*self.i.lock() += 1;
}
}
let _u = Unwinder { i: arc2 };
panic!();
})
.join();
let lock = arc.lock();
assert_eq!(*lock, 2);
}
#[test]
fn test_mutex_unsized() {
let mutex: &SpinMutex<[i32]> = &SpinMutex::<_>::new([1, 2, 3]);
{
let b = &mut *mutex.lock();
b[0] = 4;
b[2] = 5;
}
let comp: &[i32] = &[4, 2, 5];
assert_eq!(&*mutex.lock(), comp);
}
#[test]
fn test_mutex_force_lock() {
let lock = SpinMutex::<_>::new(());
::std::mem::forget(lock.lock());
unsafe {
lock.force_unlock();
}
assert!(lock.try_lock().is_some());
}
}